Trustworthy AI Autonomy M4-1 Certification and Digital Twin Generation

Assistant Professor Carnegie Mellon University

2022 @ Ding Zhao

Ding Zhao

Plan for today

- Importance of Certification/Evaluation
- Evaluation and test methods of AI autonomy
 - Naturalistic Field Operational Test (N-FOT) Test on the public roads
 - Proving ground tests
 - Simulation/digital twins/augmented reality/meta universe
- Concept of Scenarios

Ding Zhao | CMU

FIRSTMILE

Autonomous Vehicle Landscape

Decoding the Autonomous Driving Landscape July 2019 | Firstmile | www.firstmile.de

Note: All firms shown are either currently or formerly VC / PE-backed

Regulations

U.S. Department of Transportatio

2

Automated Vehicles 3.0

PREPARING FOR THE FUTURE OF TRANSPORTATION October 2018

With the development of automated vehicles, American creativity and innovation hold the potential to once again transform mobility.

Planned and Operational Connected Vehicle Deployments

Ding Zhao | CMU

5

New regulation

DEPARTMENT OF TRANSPORTATION

National Highway Traffic Safety Administration

49 CFR Part 571

Docket No. NHTSA-2021-0003

RIN 2127-AM06

Occupant Protection for Vehicles With

Automated Driving Systems

AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation.

ACTION: Final rule.

SUMMARY: This final rule amends the occupant protection Federal motor vehicle safety standards (FMVSSs) to account for future vehicles that do not have the traditional manual controls associated with a human driver because they are equipped with Automated Driving Systems (ADS). This final rule makes clear that, despite their innovative designs, vehicles with ADS technology must continue to provide the same high levels of occupant protection that

Ding Zhao | CMU https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-03/Final-Rule-Occupant-Protection-Amendment-Automated-Vehicles.pdf

AUTOS

U.S. clears way for truly driverless vehicles without steering wheels

PUBLISHED FRI, MAR 11 2022-10:31 AM EST | UPDATED FRI, MAR 11 2022-1:04 PM EST

Michael Wayland @MIKEWAYLAND

SHARE \sim

• Federal vehicle safety regulators have cleared the way for the production KEY POINTS and deployment of truly driverless vehicles that do not include manual controls such steering wheels or pedals.

- The U.S. National Highway Traffic Safety Administration on Thursday issued final rules eliminating the need for highly automated and selfdriving vehicles to need such controls.
- The new rule emphasizes such cars "must continue to provide the same high levels of occupant protection as current passenger vehicles."

Certification and Evaluation methods

Ding Zhao | CMU

On-road autonomous driving test

On-road human-driven driving test

On-track + AR dynamic test

AV sequential deployment plan

	$v(t_0)$ [km/h]	<i>R_L</i> [m]	$a_L [\mathrm{m/s^2}]$	$v_L(t_0)$ [km/h]
FURO NCAP	30:5:80	100	0	0
	30:5:70	100	0	20
scenario list	50	12 & 40	-2 & -6	50

Resource Consumption

Huang "Synthesis of Different Autonomous Vehicles (AV) Test Approaches ", ITSC, 2018

How safe is safe enough for AVs ?

How to measure the safety: Simulation, Vehicle in-the-loop simulation (VIL), physical tests, Open-roads

https://publications.jrc.ec.europa.eu/repository/handle/JRC127051

Ding Zhao | CMU

How safe is safe enough for AVs ?

Fidelity

Ding Zhao | CMU

https://publications.jrc.ec.europa.eu/repository/handle/JRC127051

- Simulation • VIL Simulation Physical test Open-roads

Approaches	Typical	Critical	Edge
Simulation	\checkmark	\checkmark	\checkmark
VIL Simulation	\checkmark	\checkmark	\checkmark
Physical track		\checkmark	
Open-roads	\checkmark		

Table 13: Distribution of scenarios by testing approach.

Naturalistic Field Operational Tests (NFOT)

Waymo's self-driving car performing left-turn maneuver

Ding Zhao | CMU

https://storage.googleapis.com/sdc-prod/v1/safety-report/2020-09-waymo-safety-report.pdf

10

AV Deployment

San Jose, CA

Ann Arbor, MI

AV testing in California

" **Permit Holders**

" As of June 20, 2018, there are 56 Autonomous, Vehicle Testing Permit holders.

Ding Zhao | CMU

Source: DMV.org (<u>https://www.dmv.org/articles/top-5-cities-for-self-driving-boom</u>)

Boston, MA

Pittsburgh, PA

Austin, TX

11

Naturalistic Field Operational Tests (NFOT)

Driving Datasets for Autonomous Vehicles

Ding Zhao | CMU

Comparison to human baselines

Classification of Waymo-involved collisions (6.1 million AV miles driven)

			W	aymo-involved by ISO 26262 Actual & sin (To	collision-releva severity classi mulated event co otals in Bold)	ant contact ification ounts	ts	Huma (No
Row#	Event type	Manner of Collision ("Other" = non-Waymo vehicle)	S0	S1 (no airbag deployment)	S1 (airbag deployment any vehicle)	S2	S 3	Collision Contributi US *
1		Road Departure, Fixed object, Rollover	0	0	0	0	0	20%
2	Single	Striking a pedestrian/cyclist	0	0	0	0	0	2%
3	Events	Struck by pedestrian/cyclist	1 (actual) 2 (sim)	0	0	0	0	<0.5%
4		Reversing	1 (actual) 1 (sim)	0	0	0	0	1%
5		Other reversing, Waymo straight	1 (actual) 1 (sim)	0	0	0	0	
6		Waymo reversing, Other straight	0	0	0	0	0	
7		Sideswipe (Same Direction)	1 (actual) 8 (sim)	1 (sim)	0	0	0	11%
8		Other lane change, Waymo straight	1 (actual) 7 (sim)	0	0	0	0	
9		Waymo lane change, Other straight	1 (sim)	1 (sim)	0	0	0	
10		Head-on + Opposite Direction Sideswipe	0	0	1 (sim)	0	0	5%
11		Rear End	11 (actual) 1 (sim)	1 (actual) 1 (sim)	2 (actual)	0	0	34%
12		Other striking, Waymo struck (stopped)	8 (actual)	0	0	0	0	
13	Multiple	Other striking, Waymo struck (slower)	2 (actual)	1 (actual)	1 (actual)	0	0	
14	Vehicle	Other striking, Waymo struck (decelerating)	1 (actual)	1 (sim)	1 (actual)†	0	0	
15	Events	Waymo striking, Other struck (stopped)	0	0	0	0	0	
10		Waymo striking, Other struck (slower)	0 1 (oim)	0	0	0	0	
18		Angled	4 (sim)	6 (sim)	1 (actual) 4 (sim)	0	0	27%
19		Same direction - Other turns across Waymo straight travel	0	2 (sim)	0	0	0	
20		Same direction - Other turns into Waymo straight travel	3 (sim)	0	2 (sim)	0	0	
21		Opposite direction - Other turns across Waymo straight travel	0	0	1 (sim)	0	0	
22		Opposite direction - Other turns into Waymo straight travel	0	0	1 (sim)	0	0	
23		Straight crossing paths	0	1 (sim)	1 (actual)	0	0	
24		Same direction - Waymo turns across other straight travel	1 (sim)	3 (sim)	0	0	0	
25		Same direction - Waymo turns into other straight travel	0	0	0	0	0	
26		Opposite direction - Waymo turns across other straight travel	0	0	0	0	0	
27		Opposite direction - Waymo turns into other straight travel	0	0	0	0	0	L
28		Total	14 (actual) 16 (sim)	1 (actual) 8 (sim)	3 (actual) 5 (sim)	0	0	100%

*CRSS 2016-2018, Urban area, \leq 45 mph roadways

† denotes sole collision in driverless operation (without human operator present)

Ding Zhao | CMU

Proving grounds tests

- Proving grounds provide a physical semi-controllable environment to test AI, e.g. autonomous vehicles (AV)
- Example of AV proving ground facilities:
 - Mcity (UM)
 - The Castle (Waymo)
 - ALMONO (Uber)
 - American Center for Mobility
 - SMART Transportation Research Center (US DOT)
 - Kcity (South Korea)

Ding Zhao | CMU

Mcity (32 acres)

Kcity (88 acres)

Rui Chen, Mansur Arief, Weiyang Zhang, and Ding Zhao. "How to Evaluate Proving Grounds for Self-Driving? A Quantitative Approach." IEEE Transactions on Intelligent Transportation Systems (2020).

Proving grounds

Geometric based test scenario generations

Ding Zhao | CMU

Proving grounds

- Data-driven test scenario generations
- Key steps:
 - Extract driving scenarios from driving database
 - Extract proving ground map geometries and assets
 - Optimize the scenario-map compatibility

Rui Chen, Mansur Arief, Weiyang Zhang, and Ding Zhao. "How to Evaluate Proving Grounds for Self-Driving? A Quantitative Approach." IEEE Transactions on Intelligent Transportation Systems (2020).

Ding Zhao | CMU

Naturalistic Driving Data

Driving Scenarios

17

Mcity Scenario Coverage 1.00001.0000 Land Efficiency

Testing Effectiveness Score

Scenario-Map Compatibility

Simulations

- Simulations allow fast and fully-controlled testing for AI algorithms
- Simulation-based testing is often done at various fidelity level

Simulation for Urban Mobility (SUMO)

CARLA simulation Ding Zhao | CMU

WeBot for Automobiles

Scalable Multi-Agent Reinforcement Learning Training School (SMARTS)

<u>Highway Gym Environment (highway-env)</u>

PreScan

<u>Uber ATG simulation platform</u>

1	Der	ault			\sim	ò	
Plan	×	Sul	acuel :	×	Selling	s ×	
06:06	CB	26	05:10		06:06		
							*
	_	-					
							I
							I
							I
							I
		г					

Waymo simulated collisions

Head-on collisions

Ding Zhao | CMU

Rear-end collisions

Schwall, Matthew, et al. "Waymo Public Road Safety Performance Data." arXiv preprint arXiv:2011.00038 (2020).

Synthesis tests

synthesize information among various testing modes

Ding Zhao | CMU

Huang "Synthesis of Different Autonomous Vehicles (AV) Test Approaches ", ITSC, 2018

• Multi-fidelity models (e.g. Gaussian processes) are promising to

Evaluation and test methods for Al autonomy

Ding Zhao | CMU

Resource Consumption

Huang "Synthesis of Different Autonomous Vehicles (AV) Test Approaches ", ITSC, 2018

Methods

- Traditional ways to identify scenarios
- **Data-based Scenario Generation**
- Adversarial Scenario Generation
- Knowledge-based Scenario Generation

Ding Zhao | CMU

Traditional ways to identify scenarios

 Table 5. Priority V2V Pre-Crash Scenarios

No	Pre-Crash Scenario	Group	Cost	FYL
1	SCP @ non signal	Junction Crossing	20.4%	20.7%
2	LTAP/OD	LTAP/OD	15.1%	15.3%
3	Rear-end/LVS	Rear-End	14.8%	14.0%
4	Opposite direction/no maneuver	Opposite Direction	14.7%	15.1%
5	Rear-end/LVD	Rear-End	6.1%	5.8%
6	Rear-end/LVM	Rear-End	5.1%	5.1%
7	Changing lanes/same direction	Lane Change	4.2%	4.3%
8	Turning/same direction	Lane Change	3.1%	3.0%
9	Opposite direction/maneuver	Opposite Direction	1.7%	1.8%
10	Drifting/same direction	Lane Change	1.7%	1.8%
	Total		86.9%	87.0%

W. G. Najm, S. Toma, J. Brewer, "Depiction of Priority Light-Vehicle Pre-Crash Scenarios for Safety Applications Based on Ding Zhao | CMU Vehicle-to-Vehicle Communications" (DOT HS 811 732, 2013).

"Accelerated" tests

Limitation

- Scenarios manually selected by human may not be able to take the advantage of the big data
- Human and AVs may have different critical scenarios

Ding Zhao | CMU

Scenario	$v_L(t_0)$ [km/h]	$a_L [\mathrm{m/s^2}]$	<i>R_L</i> [m]	v(t ₀) [km/h]
1	0	0	100	30:5:80
2	20	0	100	30:5:70
3	50	-2 & -6	12 & 40	50

Realistic safety-critical scenario generation

- **Opportunities:**
 - Cheaper data access
 - More powerful computational facilities
 - Better machine learning algorithms
- Challenges:
 - Data sparsity /imbalance/rarity ullet
 - Multi-modes
 - Dynamic long-horizon temporal decision making
 - High dimensional sensing input

Ding Zhao | CMU

Why safety-critical scenarios?

A new stage of evaluating autonomous vehicles: safety-critical scenarios

* Data source: California Department of Motor Vehicle disengagement report 2020

Manufacturer	Disengagements
Waymo	21
Cruise	27
Zoox	63
Apple	130

How to get safety-critical scenarios?

Collect from real-world road test

- Tremendously rare
- Expensive

What's the expectation of a good scenario generator ?

Reality, Adaptability, Controllability, Efficiency, Diversity

Collect from rule-based simulators

- Lack of diversity
- Not realistic

- ullet
- Safety-critical data is still rare in the latent space.

W. Ding, W. Wang, D. Zhao, A new multi-vehicle trajectory generator to simulate vehicle-to-vehicle encounters, ICRA 2019

What does each latent variable mean? How to get the trajectories we want?

W. Ding, W. Wang, D. Zhao, A new multi-vehicle trajectory generator to simulate vehicle-to-vehicle encounters, ICRA 2019

Randomly sample from the learned latent space

W. Ding, M. Xu, D. Zhao, CMTS: Conditional Multiple Trajectory Synthesizer for Generating Safety-critical Driving Scenarios, ICRA 2020

Assume encounter trajectories are formed by two parts: road shape (style), risk level (content)

Driving scenario generation

Ding Zhao | CMU

Automation Letters, 2021

Generative models

Ding Zhao | CMU

2 x 2 kernel stride = 2 intermediate grid output true data distribution 3 x 3 stride=1 6 X 6 Output of transpose convolution: output size = (input size - 1)*stride - 2*padding + (kernel size - 1) +1 Ding Zhao | CMU | 2021 nneuralnetwork.blogspot.com/2020/02/calculating-output-size-of-convolutions.html 3 image space 128 256 512 64 5 Stride 2 16 5 32 8 5 Stride 2 == 16 Stride 2 Stride 2 32 Deconv 1 Deconv 2 64 Deconv 3 Deconv 4

Deconvolution operations

Transpose convolution: expanding the input with intermediate grid

https://openai.com/blog/generative-models/

Image

14

Vanilla autoencoder

Ding Zhao | CMU

lossless encoding no information is lost when reducing the number of dimensions

lossy encoding

some information is lost when reducing the number of dimensions and can't be recovered later

encoded-decoded data back in the initial space Rⁿ

Linear autoencoder

 The optimal solution of a linear autoencoder can be obtained with PCA (Principal Component Analysis). The latent space will be by calculating the Singular Value Decomposition (SVD).

X $e(x) = P^T x$ $d(e(x)) = PP^T x$

Point	Initial	Encoded	Decoded
А	(-0.50, -0.40)	-0.63	(-0.54, -0.33)
В	(-0.40, -0.10)	-0.39	(-0.34, -0.20)
С	(0.10, 0.00)	0.09	(0.07 0.04)
D	(0.30, 0.30)	0.41	(0.35, 0.21)
F	(0.50, 0.20)	0.53	(0.46, 0.27)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Autoencoder

- Autoencoder can be used as data compression algorithm
 - images locally

ORIGINAL 1000 x 1500, 100kb

Ding Zhao | CMU

Google+ sends "latent images" and uses auto encoder to reconstruct

RAISR 1000 x 1500, 25kb

https://www.slrlounge.com/google-raisr-image-resolution-enhancement-straight-out-of-csi/

Autoencoder with neural networks Encoder Hidden layer 2 Encoder Hidden layer 1 Input $\boldsymbol{\chi}$ (D)

Ding Zhao | CMU

https://towardsdatascience.com/extreme-rare-event-classification-using-autoencoders-in-keras-a565b386f098

Issues of unregulated autoencoder

- Question: can we use one dimensional number in the latent space?
- Two ideas:
 - 1) add noise to randomize the system; 2) regularize the latent space

encoded data can be decoded without loss if the autoencoder has enough degrees of freedom

without explicit regularisation, some points of the latent space are "meaningless" once decoded

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

loss =
$$|| x - \hat{x} ||^2 + KL[N(\mu_x, \sigma_x), N(0,$$

			la
simple	input	encoding	repres
autoencoders	х		z =

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Ding Zhao | CMU

I)] = $|| \times -d(z) ||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$

Variational Autoencoder

$$|oss = C|| \times - \frac{1}{2}||^2 + KL[N(\mu_x, \sigma_x)]$$

Ding Zhao | CMU

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

$(h, N(0, I)) = C || x - f(z) ||^2 + KL[N(g(x), h(x)), N(0, I)]$

Disentangled VAE (B-VAE)

- Goal: ensuring each dimension of latent vectors learn distinct attributes
- This can be achieved by adding hyperparameter β to the loss function: $\mathcal{L}(\theta, \phi, \beta, X, Z) = \mathbb{E}[\log p_{\theta}(X|Z)] + \beta D_{KL}(q_{\phi}(Z|X)||p(Z))$
- The model then learns to use latent space as efficient as possible

Ding Zhao | CMU

Examples of VAE in practice

 β -VAE

vzimuth 4 (a) (b) emotion (smile)

Ding Zhao | CMU

VAE

Visualize the latent code

- PCA: Principal Component Analysis
 - Linear method, not robust to outliners
- t-SNE: t-distributed stochastic neighbor embedding
 - Nonlinear method, slow, may apply PCA first
- LDA: Linear Discriminant Analysis
 - Maximize the separation between multiple classes
 - Fast, need to know the labels of classes

Ding Zhao | CMU

LDA: Linear Discriminant Analysis

PCA:

component axes that maximize the variance

Ding Zhao | CMU

LDA: maximizing the component axes for class-separation

t-distributed stochastic neighbor embedding (t-SNE)

How to visualize the latent space z of VAE?

- Reduce the dimension to 2 or 3
- Unsupervised dimension reduction
- Similar vectors should be close

Toolbox

• sklearn.manifold.TSNE

https://distill.pub/2016/misread-tsne/

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

Ding Zhao | CMU

(a) Visualization by t-SNE.

Visualization of MNIST (digits 0-9) dataset

Van Der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). "Visualizing Data Using t-SNE". Journal of Machine Learning Research. 9: 2579–2605.

t-distributed stochastic neighbor embedding (t-SNE)

How to visualize the latent space *z* of VAE?

- Reduce the dimension to 2 or 3
- Unsupervised dimension reduction
- Similar vectors should be close

Toolbox

sklearn.manifold.TSNE

Ding Zhao | CMU

9

https://www.oreilly.com/people/cyrille-rossant/

- Use road bird-view image as constraints

Ding W, Xu M, Zhao D. Cmts: A conditional multiple trajectory synthesizer for generating safety-critical driving scenarios[C]//2020 IEEE International Conference on Robotics and Automation (ICRA).

Ding Zhao | CMU

• Use linear interpolation of collision data and safe data to generate safety-critical data

- λ controls the risk value

Robotics and Automation (ICRA).

Ding Zhao | CMU

• Different map conditions have different trajectory output

Flow-based generative models

Approximate likelihood

VAE: maximize ELBO.

Exact likelihood

Flow-based generative models: minimize the negative log-likelihood

Safety-critical scenarios generation with flow-based model

Scenario Generator (flow-based model)

> Algorithms to be evaluated

- An adversarial attack framework

Ding Zhao | CMU Ding W, Chen B, Li B, et al. Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation[J]. arXiv preprint arXiv:2009.08311, 2020.

Use flow-based model to estimate the distribution of risky traffic scenarios

Safety-critical scenarios generation with flow-based model

Ding W, Chen B, Li B, et al. Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation[J]. arXiv preprint arXiv:2009.08311, 2020. Ding Zhao | CMU

Summary

Use the real-world data
Some kind of controllability

Poor adaptivity, no interaction with downstream task
Only use existing data, lack of diversity

Worth Reading

- Beta-VAE Learning basic visual concepts with a constrained variational framework." (2016). Check open review: <u>https://openreview.net/forum?id=Sy2fzU9gl</u>
- General intro to GAN: Communications of the ACM, 63(11), pp.139-144. GAN Lab: https://poloclub.github.io/ganlab/

Ding Zhao | CMU

Higgins, Irina, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. "beta-vae:

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2020. Generative adversarial networks.

