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Plan for today
• Importance of Certification/Evaluation


• Evaluation and test methods of AI autonomy


• Naturalistic Field Operational Test (N-FOT) - Test on the public roads


• Proving ground tests


• Simulation/digital twins/augmented reality/meta universe


• Concept of Scenarios
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263 Self-Driving Car Startups
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October 2018
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Regulations
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New regulation

6https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-03/Final-Rule-Occupant-Protection-Amendment-Automated-Vehicles.pdf
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Certification and Evaluation methods

7Huang ''Synthesis of Different  Autonomous Vehicles (AV) Test Approaches ”,  ITSC, 2018
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How safe is safe enough for AVs ? 

8

How to measure the safety: Simulation,  Vehicle in-the-loop simulation (VIL), physical tests, Open-roads 

https://publications.jrc.ec.europa.eu/repository/handle/JRC127051 



Ding Zhao | CMU

How safe is safe enough for AVs ? 

9https://publications.jrc.ec.europa.eu/repository/handle/JRC127051 
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Naturalistic Field Operational Tests (NFOT)

10

Waymo’s self-driving car performing left-turn maneuver

https://storage.googleapis.com/sdc-prod/v1/safety-report/2020-09-waymo-safety-report.pdf 

https://storage.googleapis.com/sdc-prod/v1/safety-report/2020-09-waymo-safety-report.pdf
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“Permit Holders

As of June 20, 2018, there are 56 Autonomous Vehicle Testing Permit holders.”
   

Source: DMV.ca.gov (https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing)

Source: DMV.org (https://www.dmv.org/articles/top-5-cities-for-self-driving-boom)  
 
 
 

● AV testing in California 

      San Jose, CA	        Ann Arbor, MI	                Boston, MA	                      Pittsburgh, PA	             Austin, TX

AV Deployment

11

https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
https://www.dmv.org/articles/top-5-cities-for-self-driving-boom
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Waymo 20 million miles and counting…
Forbes, January 2020 12

Naturalistic Field Operational Tests (NFOT)

https://waymo.com/ontheroad/
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Driving Datasets for Autonomous Vehicles

13
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Comparison to human baselines

14

Classification of Waymo-involved collisions (6.1 million AV miles driven)

A total of 18 dangerous situations observed  
during data collection and 29 situations  
during simulation

Schwall, Matthew, et al. "Waymo Public Road Safety Performance Data." arXiv preprint arXiv:2011.00038 (2020).
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Proving grounds tests
• Proving grounds provide a physical semi-controllable environment  

to test AI, e.g. autonomous vehicles (AV)


• Example of AV proving ground facilities:


• Mcity (UM)


• The Castle (Waymo)


• ALMONO (Uber)


• American Center for Mobility


• SMART Transportation Research Center (US DOT)


• Kcity (South Korea)
15

Mcity (32 acres)ALMONO (42 acres) Kcity (88 acres)

Rui Chen, Mansur Arief, Weiyang Zhang, and Ding Zhao. "How to Evaluate Proving Grounds for Self-Driving? 
A Quantitative Approach." IEEE Transactions on Intelligent Transportation Systems (2020).
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Proving grounds
• Geometric based test scenario generations 

16
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Proving grounds
• Data-driven test scenario generations


• Key steps:


• Extract driving scenarios 
from driving database


• Extract proving ground map 
geometries and assets


• Optimize the scenario-map  
compatibility 
 

17

Rui Chen, Mansur Arief, Weiyang Zhang, and Ding Zhao. "How to Evaluate Proving Grounds for Self-Driving? 
A Quantitative Approach." IEEE Transactions on Intelligent Transportation Systems (2020).
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Simulations
• Simulations allow fast and fully-controlled testing for AI algorithms


• Simulation-based testing is often done at various fidelity level

18

Simulation for Urban Mobility (SUMO) Highway Gym Environment (highway-env)

Uber ATG simulation platformCARLA simulation PreScan

Scalable Multi-Agent Reinforcement 
Learning Training School (SMARTS)

WeBot for Automobiles

https://www.eclipse.org/sumo/
https://highway-env.readthedocs.io/en/latest/
https://medium.com/@UberATG/simulation-the-invisible-gatekeeper-e6ef84ea7647
https://carla.org/
https://tass.plm.automation.siemens.com/prescan
https://github.com/huawei-noah/SMARTS
https://github.com/huawei-noah/SMARTS
https://cyberbotics.com/doc/automobile/index
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Waymo simulated collisions

19

Head-on collisions Rear-end collisions

Schwall, Matthew, et al. "Waymo Public Road Safety Performance Data." arXiv preprint arXiv:2011.00038 (2020).
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Synthesis tests
• Multi-fidelity models (e.g. Gaussian processes) are promising to 

synthesize information among various testing modes

20Huang ''Synthesis of Different  Autonomous Vehicles (AV) Test Approaches ”,  ITSC, 2018
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Evaluation and test methods for AI autonomy

21Huang ''Synthesis of Different  Autonomous Vehicles (AV) Test Approaches ”,  ITSC, 2018
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Methods
• Traditional ways to identify scenarios


• Data-based Scenario Generation


• Adversarial Scenario Generation


• Knowledge-based Scenario Generation

22
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Traditional ways to identify scenarios

23W. G. Najm, S. Toma, J. Brewer, “Depiction of Priority Light-Vehicle Pre-Crash Scenarios for Safety Applications Based on 
Vehicle-to-Vehicle Communications” (DOT HS 811 732, 2013).
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Limitation

24

• Scenarios manually selected by 
human may not be able to take 
the advantage of the big data


• Human and AVs may have 
different critical scenarios
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Realistic safety-critical scenario generation
• Opportunities:


• Cheaper data access


• More powerful computational facilities


• Better machine learning algorithms


• Challenges:


• Data sparsity  /imbalance/rarity


• Multi-modes


• Dynamic long-horizon temporal decision making


• High dimensional sensing input
25



26* Data source: California Department of Motor Vehicle disengagement report 2020

Safety? 

Why safety-critical scenarios?

Manufacturer Disengagements

Waymo 21
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Zoox 63

Apple 130

A new stage of evaluating autonomous vehicles: safety-critical scenarios 
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How to get safety-critical scenarios?

Collect from real-world road test

• Tremendously rare

• Expensive

Collect from rule-based simulators

What’s the expectation of a good scenario generator ?

• Lack of diversity

• Not realistic

Reality, Adaptability, Controllability, Efficiency, Diversity 
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Data-based Scenario Generation

• What does each latent variable mean? How to get the trajectories we want? 

W. Ding, W. Wang, D. Zhao, A new multi-vehicle trajectory generator to simulate vehicle-to-vehicle encounters, ICRA 2019

Sampled Trajectories

𝑧1
𝑧2
𝑧3
𝑧4
𝑧5
𝑧6

Speed?

Road shape?

Distance?

• Safety-critical data is still rare in the latent space.



29W. Ding, W. Wang, D. Zhao, A new multi-vehicle trajectory generator to simulate vehicle-to-vehicle encounters, ICRA 2019

Data-based Scenario Generation
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Randomly sample from the learned latent space
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Data-based Scenario Generation

Assume encounter trajectories are formed by two parts: road shape (style), risk level (content)  

W. Ding, M. Xu, D. Zhao, CMTS: Conditional Multiple Trajectory Synthesizer for Generating Safety-critical Driving Scenarios, ICRA 2020



Ding Zhao | CMU

Driving scenario generation

31Ding W, Chen B, Li B, et al. Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation. IEEE Robotics and 
Automation Letters, 2021
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Generative models

32
https://openai.com/blog/generative-models/
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Vanilla autoencoder

33
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Ding Zhao | CMU

Linear autoencoder
• The optimal solution of a linear autoencoder can 

be obtained with PCA (Principal Component 
Analysis). The latent space will be  by calculating 
the Singular Value Decomposition (SVD).

34
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder

35

• Autoencoder can be used as data compression algorithm


• Google+ sends “latent images” and uses auto encoder to reconstruct 
images locally

https://www.slrlounge.com/google-raisr-image-resolution-enhancement-straight-out-of-csi/
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Autoencoder with neural networks

36
https://towardsdatascience.com/extreme-rare-event-classification-using-autoencoders-in-keras-a565b386f098

zx ̂xϕ θ
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Issues of unregulated autoencoder
• Question: can we use one dimensional number in the latent space?


• Two ideas: 


• 1) add noise to randomize the system; 2) regularize the latent space

37
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Variational Autoencoder

38
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Variational Autoencoder

39
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Disentangled VAE ( -VAE)β

40

• Goal: ensuring each dimension of  
latent vectors learn distinct attributes


• This can be achieved by adding  
hyperparameter  to the loss function: 




• The model then learns to use latent space as 
efficient as possible 

β
ℒ(θ, ϕ, β, X, Z) = 𝔼[log pθ(X |Z)] + β DKL(qϕ(Z |X)∥p(Z))

Higgins, Irina, et al. "beta-vae: Learning basic visual concepts with a constrained variational framework." (2016).



Ding Zhao | CMU

Examples of VAE in practice

41
Higgins, Irina, et al. "beta-vae: Learning basic visual concepts with a constrained variational framework." (2016).
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Visualize the latent code
• PCA: Principal Component Analysis


• Linear method, not robust to outliners


• t-SNE: t-distributed stochastic neighbor 
embedding


• Nonlinear method, slow, may apply PCA first


• LDA: Linear Discriminant Analysis


• Maximize the separation between multiple 
classes


• Fast, need to know the labels of classes
42
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LDA: Linear Discriminant Analysis

43
https://towardsdatascience.com/dimensionality-reduction-for-data-visualization-pca-vs-tsne-vs-umap-be4aa7b1cb29
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t-distributed stochastic neighbor embedding (t-SNE)

44Van Der Maaten, L.J.P.; Hinton, G.E. (Nov 2008). "Visualizing Data Using t-SNE". Journal of Machine Learning Research. 9: 2579–2605.

How to visualize the latent space  of VAE?z
• Reduce the dimension to 2 or 3


• Unsupervised dimension reduction


• Similar vectors should be close

Visualization of MNIST (digits 0-9) dataset  

Toolbox
• sklearn.manifold.TSNE

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://distill.pub/2016/misread-tsne/
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t-distributed stochastic neighbor embedding (t-SNE)

45

How to visualize the latent space  of VAE?z
• Reduce the dimension to 2 or 3


• Unsupervised dimension reduction


• Similar vectors should be close
Toolbox

• sklearn.manifold.TSNE

https://www.oreilly.com/people/cyrille-rossant/
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Safety-critical trajectory via VAE

46Ding W, Xu M, Zhao D. Cmts: A conditional multiple trajectory synthesizer for generating safety-critical driving scenarios[C]//2020 IEEE International Conference on 
Robotics and Automation (ICRA).

• Use linear interpolation of collision data and safe data to generate safety-critical data
• Use road bird-view image as constraints
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Safety-critical trajectory via VAE

47

• Different map conditions have different trajectory output

• λ controls the risk value 

λ

Ding W, Xu M, Zhao D. Cmts: A conditional multiple trajectory synthesizer for generating safety-critical driving scenarios[C]//2020 IEEE International Conference on 
Robotics and Automation (ICRA).
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Flow-based generative models

48https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Approximate likelihood

Exact likelihood
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• An adversarial attack framework

49

Safety-critical scenarios generation with flow-based model

Ding W, Chen B, Li B, et al. Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation[J]. arXiv preprint arXiv:2009.08311, 2020.

Algorithms 

to be evaluated 

• Use flow-based model to estimate the distribution of risky traffic scenarios

Scenario Generator

(flow-based model)

Simulation risk value

update



Ding Zhao | CMU

Safety-critical scenarios generation with flow-based model

50
Ding W, Chen B, Li B, et al. Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation[J]. arXiv preprint arXiv:2009.08311, 2020.
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Data-based Scenario Generation

• Use the real-world data

• Some kind of controllability

• Poor adaptivity, no interaction with downstream task

• Only use existing data, lack of diversity

Summary
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Worth Reading
• Beta-VAE 

Higgins, Irina, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, 
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. "beta-vae: 
Learning basic visual concepts with a constrained variational 
framework." (2016). 
Check open review: https://openreview.net/forum?id=Sy2fzU9gl


• General intro to GAN: 
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, 
S., Courville, A. and Bengio, Y., 2020. Generative adversarial networks. 
Communications of the ACM, 63(11), pp.139-144. 
GAN Lab: https://poloclub.github.io/ganlab/ 

52

https://openreview.net/forum?id=Sy2fzU9gl

